SnowFlake 算法,是 Twitter 開源的分布式 ID 生成算法。
其核心思想就是:使用一個 64 bit 的 long 型的數(shù)字作為全局唯一 ID。在分布式系統(tǒng)中的應(yīng)用十分廣泛,且 ID 引入了時間戳,基本上保持自增的,后面的代碼中有詳細的注解。
這 64 個 bit 中,其中 1 個 bit 是不用的,然后用其中的 41 bit 作為毫秒數(shù),用 10 bit 作為工作機器 ID,12 bit 作為序列號。
圖片
給大家舉個例子吧,比如下面那個 64 bit 的 long 型數(shù)字:
1 bit:是不用的,為啥呢?
因為二進制里第一個 bit 為如果是 1,那么都是負數(shù),但是我們生成的 ID 都是正數(shù),所以第一個 bit 統(tǒng)一都是 0。
41 bit:表示的是時間戳,單位是毫秒。
41 bit 可以表示的數(shù)字多達 2^41 - 1,也就是可以表示 2 ^ 41 - 1 個毫秒值,換算成年就是表示 69 年的時間。
10 bit:記錄工作機器 ID。
代表的是這個服務(wù)最多可以部署在 2^10 臺機器上,也就是 1024 臺機器。
但是 10 bit 里 5 個 bit 代表機房 ID,5 個 bit 代表機器 ID。意思就是最多代表 2 ^ 5 個機房(32 個機房),每個機房里可以代表 2 ^ 5 個機器(32 臺機器),也可以根據(jù)自己公司的實際情況確定。
12 bit:這個是用來記錄同一個毫秒內(nèi)產(chǎn)生的不同 ID。
12 bit 可以代表的最大正整數(shù)是 2 ^ 12 - 1 = 4096,也就是說可以用這個 12 bit 代表的數(shù)字來區(qū)分同一個毫秒內(nèi)的 4096 個不同的 ID。
簡單來說,你的某個服務(wù)假設(shè)要生成一個全局唯一 ID,那么就可以發(fā)送一個請求給部署了 SnowFlake 算法的系統(tǒng),由這個 SnowFlake 算法系統(tǒng)來生成唯一 ID。
這個 SnowFlake 算法系統(tǒng)首先肯定是知道自己所在的機房和機器的,比如機房 ID = 17,機器 ID = 12。
接著 SnowFlake 算法系統(tǒng)接收到這個請求之后,首先就會用二進制位運算的方式生成一個 64 bit 的 long 型 ID,64 個 bit 中的第一個 bit 是無意義的。
接著 41 個 bit,就可以用當前時間戳(單位到毫秒),然后接著 5 個 bit 設(shè)置上這個機房 ID,還有 5 個 bit 設(shè)置上機器 ID。
最后再判斷一下,當前這臺機房的這臺機器上這一毫秒內(nèi),這是第幾個請求,給這次生成 ID 的請求累加一個序號,作為最后的 12 個 bit。
最終一個 64 個 bit 的 ID 就出來了,類似于:
圖片
這個算法可以保證,一個機房的一臺機器上,在同一毫秒內(nèi)生成了一個唯一的 ID??赡芤粋€毫秒內(nèi)會生成多個 ID,但是有最后 12 個 bit 的序號來區(qū)分開來。
下面我們簡單看看這個 SnowFlake 算法的一個代碼實現(xiàn),這就是個示例,大家如果理解了這個意思之后,以后可以自己嘗試改造這個算法。
總之就是用一個 64 bit 的數(shù)字中各個 bit 位來設(shè)置不同的標志位,區(qū)分每一個 ID。
SnowFlake 算法的實現(xiàn)代碼如下:
public class IdWorker { //因為二進制里第一個 bit 為如果是 1,那么都是負數(shù),但是我們生成的 id 都是正數(shù),所以第一個 bit 統(tǒng)一都是 0。 //機器ID 2進制5位 32位減掉1位 31個 private long workerId; //機房ID 2進制5位 32位減掉1位 31個 private long datacenterId; //代表一毫秒內(nèi)生成的多個id的最新序號 12位 4096 -1 = 4095 個 private long sequence; //設(shè)置一個時間初始值 2^41 - 1 差不多可以用69年 private long twepoch = 1585644268888L; //5位的機器id private long workerIdBits = 5L; //5位的機房id private long datacenterIdBits = 5L; //每毫秒內(nèi)產(chǎn)生的id數(shù) 2 的 12次方 private long sequenceBits = 12L; // 這個是二進制運算,就是5 bit最多只能有31個數(shù)字,也就是說機器id最多只能是32以內(nèi) private long maxWorkerId = -1L ^ (-1L << workerIdBits); // 這個是一個意思,就是5 bit最多只能有31個數(shù)字,機房id最多只能是32以內(nèi) private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); private long workerIdShift = sequenceBits; private long datacenterIdShift = sequenceBits + workerIdBits; private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private long sequenceMask = -1L ^ (-1L << sequenceBits); //記錄產(chǎn)生時間毫秒數(shù),判斷是否是同1毫秒 private long lastTimestamp = -1L; public long getWorkerId(){ return workerId; } public long getDatacenterId() { return datacenterId; } public long getTimestamp() { return System.currentTimeMillis(); } public IdWorker(long workerId, long datacenterId, long sequence) { // 檢查機房id和機器id是否超過31 不能小于0 if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException( String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException( String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; this.sequence = sequence; } // 這個是核心方法,通過調(diào)用nextId()方法,讓當前這臺機器上的snowflake算法程序生成一個全局唯一的id public synchronized long nextId() { // 這兒就是獲取當前時間戳,單位是毫秒 long timestamp = timeGen(); if (timestamp < lastTimestamp) { System.err.printf( "clock is moving backwards. Rejecting requests until %d.", lastTimestamp); throw new RuntimeException( String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } // 下面是說假設(shè)在同一個毫秒內(nèi),又發(fā)送了一個請求生成一個id // 這個時候就得把seqence序號給遞增1,最多就是4096 if (lastTimestamp == timestamp) { // 這個意思是說一個毫秒內(nèi)最多只能有4096個數(shù)字,無論你傳遞多少進來, //這個位運算保證始終就是在4096這個范圍內(nèi),避免你自己傳遞個sequence超過了4096這個范圍 sequence = (sequence + 1) & sequenceMask; //當某一毫秒的時間,產(chǎn)生的id數(shù) 超過4095,系統(tǒng)會進入等待,直到下一毫秒,系統(tǒng)繼續(xù)產(chǎn)生ID if (sequence == 0) { timestamp = tilNextMillis(lastTimestamp); } } else { sequence = 0; } // 這兒記錄一下最近一次生成id的時間戳,單位是毫秒 lastTimestamp = timestamp; // 這兒就是最核心的二進制位運算操作,生成一個64bit的id // 先將當前時間戳左移,放到41 bit那兒;將機房id左移放到5 bit那兒;將機器id左移放到5 bit那兒;將序號放最后12 bit // 最后拼接起來成一個64 bit的二進制數(shù)字,轉(zhuǎn)換成10進制就是個long型 return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence; } /** * 當某一毫秒的時間,產(chǎn)生的id數(shù) 超過4095,系統(tǒng)會進入等待,直到下一毫秒,系統(tǒng)繼續(xù)產(chǎn)生ID * @param lastTimestamp * @return */ private long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } //獲取當前時間戳 private long timeGen(){ return System.currentTimeMillis(); } /** * main 測試類 * @param args */ public static void main(String[] args) { System.out.println(1&4596); System.out.println(2&4596); System.out.println(6&4596); System.out.println(6&4596); System.out.println(6&4596); System.out.println(6&4596);// IdWorker worker = new IdWorker(1,1,1);// for (int i = 0; i < 22; i++) {// System.out.println(worker.nextId());// } }}
SnowFlake 算法的優(yōu)點:
SnowFlake 算法的缺點:
依賴與系統(tǒng)時間的一致性,如果系統(tǒng)時間被回調(diào),或者改變,可能會造成 ID 沖突或者重復。
實際中我們的機房并沒有那么多,我們可以改進改算法,將 10bit 的機器 ID 優(yōu)化,成業(yè)務(wù)表或者和我們系統(tǒng)相關(guān)的業(yè)務(wù)。
本文鏈接:http://www.www897cc.com/showinfo-26-71938-0.html雪花算法詳解與Java實現(xiàn):分布式唯一ID生成原理
聲明:本網(wǎng)頁內(nèi)容旨在傳播知識,若有侵權(quán)等問題請及時與本網(wǎng)聯(lián)系,我們將在第一時間刪除處理。郵件:2376512515@qq.com
上一篇: Ref的使用,你學會了嗎?