作者 | 波哥
審校 | 重樓
Java虛擬機(JVM)的自動內存管理是Java開發者的福音,它通過垃圾收集(GC)機制自動回收不再使用的對象,極大地簡化了內存管理。然而,不恰當的GC配置或不理想的垃圾收集器選擇可能會對應用性能產生負面影響。為了優化Java應用的性能,深入理解GC的原理和策略是至關重要的。本文筆者將詳細探討JVM的垃圾收集機制,包括內存模型、GC算法、各種垃圾收集器的特點及其調優策略。
JVM的內存模型是理解GC機制的基礎。JVM將內存分為多個區域,主要包括堆(Heap)、方法區(Method Area)、程序計數器(Program Counter Register)、虛擬機棧(VM Stack)和本地方法棧(Native Method Stack)。
堆內存是Java虛擬機(JVM)管理的最大一塊內存區域,它被所有線程共享,主要用于存放對象實例和數組。從垃圾收集的角度,堆內存進一步細分為新生代(Young Generation)、老年代(Old Generation)以及元空間(Metaspace,在Java 8之后取代了永久代PermGen)。
(1)新生代(Young Generation)
新生代是大多數新創建的對象的誕生地。由于對象的生存周期大多數較短,新生代的垃圾收集(Minor GC)發生頻繁但速度快。新生代進一步分為三個區域:
(2)老年代(Old Generation)
隨著時間的推移,一些在新生代中經歷了多次GC依然存活的對象會被移動到老年代。老年代用于存放應用中生命周期長的對象。相較于新生代,老年代的空間更大,GC發生的頻率更低,但每次GC的時間更長。
對象進入老年代(Old Generation)通常是基于它們的存活周期。JVM采用分代垃圾收集策略,其中對象首先在新生代(Young Generation)分配。隨著垃圾收集的進行,只有存活下來的對象才會逐步晉升到老年代。具體而言,有幾種情況下對象會進入到老年代:
(3)經歷多次Minor GC后仍然存活的對象
新生代中的對象在經歷了一定數量的Minor GC(垃圾收集只針對新生代的收集稱為Minor GC)后,如果仍然存活,它們會被移動到老年代。JVM中有一個年齡計數器,每當對象在Minor GC后仍然存活,它的年齡就會增加。當對象的年齡增加到一定閾值(默認為15,但可以通過JVM參數-XX:MaxTenuringThreshold進行調整)時,這個對象就會被晉升到老年代。
(4)大對象直接分配到老年代
所謂的大對象是指需要大量連續內存空間的Java對象,例如那些很大的數組和長字符串。如果新生代中的Eden區無法容納一個新創建的對象,JVM就會直接將這個對象分配到老年代。這樣做是為了避免在新生代中為大對象分配內存后,進行Minor GC時發生大量的內存復制操作(因為新生代使用的是復制算法)。通過JVM參數-XX:PretenureSizeThreshold可以設置大對象的大小閾值。
(5)動態年齡判斷
在新生代的兩個Survivor區之間,對象每經過一次Minor GC就會年齡增加。如果在Survivor空間中相同年齡所有對象的大小的總和大于Survivor空間的一半,年齡大于或等于該年齡的對象就可以直接進入老年代,無需等到-XX:MaxTenuringThreshold設置的年齡。
(6)空間分配擔保
在進行Minor GC前,虛擬機會檢查老年代最大可用的連續空間是否大于新生代所有對象的總空間。如果這個條件不能滿足,虛擬機會提前將新生代中的部分對象轉移到老年代中,這個過程稱為“空間分配擔保”。目的是確保Minor GC可以順利完成,不會因為老年代空間不足而觸發更耗時的Full GC。
(7)元空間(Metaspace)
元空間用于存放類的元數據信息,如類的定義信息、常量、靜態變量等,并使用本地內存(而非JVM堆內存)。在Java 8之前,這部分數據被存放在永久代中。元空間的引入是為了避免永久代容易發生的內存溢出問題,并提供更靈活的內存管理。
方法區(Method Area)是堆的一部分,也被稱為非堆(Non-Heap),它被所有線程共享。方法區主要用于存放已被虛擬機加載的類信息、常量、靜態變量、即時編譯器編譯后的代碼等數據。
在Java 8及之后的版本中,傳統的永久代(PermGen)被元空間(Metaspace)所取代。與永久代不同,元空間并不在虛擬機內存中,而是使用本地內存,因此,元空間的大小只受本地內存限制。
方法區的特點
方法區的垃圾收集
方法區的垃圾收集比較少見且難以執行,主要涉及兩部分工作:廢棄常量的回收和無用類的卸載。無用類的卸載條件相對嚴格,需要同時滿足以下三個條件:
GC算法是實現垃圾收集的具體方法。主要的GC算法包括標記-清除(Mark-Sweep)、復制(Copying)和標記-整理(Mark-Compact),下面筆者將詳細介紹這三種算法的工作原理以及它們的優缺點。
(1)工作原理
(2)優點
(3)缺點
(1)工作原理
(2)優點
(3)缺點
(1)工作原理
(2)優點
(3)缺點
現代JVM實現通常采用以上基本GC算法的變體或組合,以達到更高的垃圾收集效率和更低的停頓時間。例如:G1收集器就是將堆劃分為多個區域(Region),并根據每個區域的垃圾回收價值進行增量收集,旨在平衡吞吐量和停頓時間。ZGC和Shenandoah收集器則采用了基于Region的復制算法,實現了幾乎全程并發的垃圾收集,極大地減少了停頓時間。
JVM提供了多種垃圾收集器,下面我們大概介紹下目前主流的幾種垃圾回收器及每種收集器的適用場景。
以上我們詳細介紹了垃圾回收算法和主流的垃圾回收器,接下來我們詳細介紹下在實際應用中,該如何根據具體應用特性進行調優。以下是一些調優的通用策略:
JVM提供了豐富的GC相關參數,通過調整這些參數(如新生代與老年代的比例、觸發Full GC的閾值等),可以微調垃圾收集的行為,優化性能。
深入理解JVM的垃圾收集機制和各種垃圾收集器的特點是進行有效性能調優的前提。通過選擇合適的垃圾收集器并適當調優,可以顯著提升Java應用的性能,滿足不同場景下對響應時間和吞吐量的需求。記住,沒有一勞永逸的解決方案,性能優化是一個持續的過程,需要不斷地監控、評估和調整。
波哥,互聯行業從業10余年,先后擔任項目總監及架構師。目前專攻技術,喜歡研究技術原理。技術全面,主攻Java,精通JVM底層機制及Spring全家桶底層框架原理,熟練掌握當前主流的中間件、服務網格等技術原理。
本文鏈接:http://www.www897cc.com/showinfo-26-76544-0.html垃圾收集器的秘密:深入理解JVM性能調優
聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。郵件:2376512515@qq.com
上一篇: 實現一個刷數任務,需要思考哪些維度?